

CHECK

VÁLVULAS PARA CONTROL DE BOMBAS

VÁLVULAS PARA CONTROL DE BOMBAS OPERADAS ELÉCTRICAMENTE CON SERVICIO DE RETENCIÓN

La válvula "IRUA TECH. CHECKTRONIC" para el Control de Bombas son ...TRES VÁLVULAS EN UNA.

La válvula CHECKTRONIC es una válvula de "Seguridad por fallo de corriente" operada eléctricamente para el control de arranque y parada de bombas, provista de un sistema ajustable para controlar la velocidad de apertura y cierre, y así minimizar las sobrepresiones y golpes de ariete asociados a las operaciones normales de las bombas.

Además tiene incorporada la función de retención por la que la válvula se cierra automáticamente cuando se produce un fallo de corriente o de la bomba, con independencia del actuador y sus controles.

El actuador incorpora un volante que permite regular la válvula manualmente ante fallo de corriente.

La válvula CHECKTRONIC de control de bombas operada mediante actuador eléctrico, simplifica enormemente la instalación en campo ya que elimina las complicadas unidades de potencia y los controles asociados con los sistemas oleohidráulicos, de agua o neumáticos que actúan las válvulas.

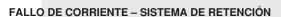
Las válvulas son adecuadas para poder ser usadas tanto para aguas limpias como aguas residuales (especificar en pedido). Sus líneas de corriente, bien en pasos en "Y" o paso curvo, reducen la pérdida de carga reduciendo de esta forma los costes de bombeo. La válvula de control de bombas CHECKTRONIC combina los valores de simplicidad, versatilidad y seguridad.

FUNCIONAMIENTO



ARRANQUE DE BOMBA

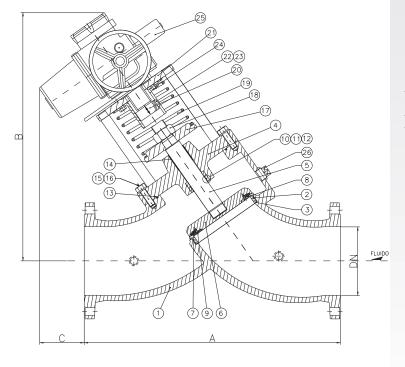
Cuando se actúa el arrancador de la bomba la válvula permanece cerrada, el actuador eléctrico de la válvula se energiza y comienza a abrir lentamente la válvula una vez la bomba haya arrancado. La velocidad lenta de apertura de la válvula permite controlar muy bien el aporte de caudal a la tubería de impulsión con el objeto de minimizar los transitorios y sobrepresiones durante el arranque. La válvula continúa hasta la posición totalmente abierta.


Una vez totalmente abierta la válvula, ésta produce unas pérdidas de carga muy bajas y puede manejar fluidos tales como aguas residuales sin que la válvula se obstruya. El actuador eléctrico de la válvula tiene un indicador visual de posición en las posiciones de totalmente abierto y totalmente cerrado.

PARADA NORMAL DE LA BOMBA

Para la operación de cierre primeramente el actuador eléctrico de la válvula comienza a cerrar la misma pero la bomba continúa en marcha. La velocidad lenta del cierre de la válvula controla la rapidez de desaceleración de la columna del fluido al objeto de minimizar las separaciones de columna, transitorios y golpes de ariete.

El motor de la bomba sólo se para una vez la válvula está completamente cerrada y el fluido de la descarga esté totalmente en reposo.


Si la válvula está abierta y se produce una pérdida de potencia del motor de la bomba o un fallo de corriente, el disco de cierre queda libre del actuador eléctrico y mediante un muelle interno cierra rápidamente para evitar el flujo inverso a través de la bomba.

Válvula de Paso en "Y" Fig 2920-Y

ГЕМ	DESCRIPCIÓN	ITEM	DESCRIPCIÓN
1	CUERPO	14	CASQUILLO GUIA
2	ASIENTO	15	TORNILLOS CUERPO-TAPA
3	JUNTA TÓRICA EN ASIENTO	16	ARANDELA
4	TAPA	17	GUIA MUELLE INFERIOR
5	EJE	18	TURCA EJE
6	DISCO DE CIERRE	19	MUELLE
7	JUNTA DE CIERRE	20	EJE ACTUADOR
8	ARANDELA FIJACIÓN JUNTA	21	SOPORTE ACTUADOR
9	TORNILLO FIJACIÓN ARANDELA	22	CHAVETA
10	CASQUILLO EN TAPA	23	TORNILLO SUJECIÓN CHAVETA
11	RASCADOR	24	TORNILLO
12	JUNTA TÓRICA	25	ACTUADOR
13	JUNTA TÓRICA	26	TAPÓN

DIMENSIONES Y PESOS APROXIMADOS

PASOS EN "Y" PN16 (Consultar para otras presiones)

ÎRUA	Α	В	С	PESO
	mm	mm	mm	kg
DN80	305	737	394	300
DN100	330	775	368	136
DN150	457	851	330	238
DN200	622	940	267	306
DN250	660	1029	330	394
DN300	787	1143	318	635
DN350	838	1168	292	1088
DN400	914	1334	343	1247
DN450	1016	1524	394	1428
DN500	1016	1549	394	1564
DN600	1219	1626	432	3082

ÍNDICE DE PÉRDIDA DE CARGA (Kv)

Kv de la válvula	DN80	DN100	DN150	DN200	DN250	DN300	DN350	DN400	DN450	DN500	DN600
Paso en "Y"	153	264	597	1152	1663	2474	3327	4265	5715	6824	11089

9

10

11

12

13

25					Ī
			.)		
			J		
21)—					
20—					
(19)——			-(24)		Ш
(18)——			-2223		
(15)(16)——			- 17		
(13)——				1	
(14)					
_					
(5)—	# !		FLUIDO	-뒴-	-
_		N Z			
(1)(1)(2)———————————————————————————————			11111		
26				<u> </u>	
_		1/////////////////////////////////////	<u>_</u> 8 ₩		1
7			2		
9			<u>3</u> ↓(1)		
	4-12/				
	D	N _			
	_	٨			

Válvula de Paso en curvo Fig 2920-C

NDICE	DE	DÉBUID	V DE	CARGA	(Kv)	
III			~ >-	OAIIGA	(124)	

Kv de la válvula	DN80	DN100	DN150	DN200	DN250	DN300	DN350	DN400	DN450	DN500	DN600
Paso Curvo	239	418	938	1535	2644	3839	5118	6568	9383	11942	15354

ITEM	DESCRIPCIÓN	ITEM	DESCRIPCIÓN
1	CUERPO	14	CASQUILLO GUIA
2	ASIENTO	15	TORNILLOS CUERPO-TAPA
3	JUNTA TÓRICA EN ASIENTO	16	ARANDELA
4	TAPA	17	GUIA MUELLE INFERIOR
5	EJE	18	TURCA EJE
6	DISCO DE CIERRE	19	MUELLE
7	JUNTA DE CIERRE	20	EJE ACTUADOR

21

SOPORTE ACTUADOR TORNILLO FIJACIÓN ARANDELA 22 CHAVETA TORNILLO SUJECIÓN CHAVETA CASQUILLO EN TAPA 23

RASCADOR TORNILLO JUNTA TÓRICA 25 ACTUADOR JUNTA TÓRICA TAPÓN

DIMENSIONES Y PESOS APROXIMADOS

ARANDELA FIJACIÓN JUNTA

Paso curvo PN16 (Consultar para otras presiones)

acc currer into (concurrar para cirac precionec)									
ÎRUA	Α	В	С	PESO					
	mm	mm	mm	kg					
DN80	197	813	127	300					
DN100	229	838	152	136					
DN150	292	864	178	238					
DN200	356	889	203	306					
DN250	419	914	279	394					
DN300	483	953	330	635					
DN350	546	1041	406	1088					
DN400	610	1270	432	1247					
DN450	673	1321	533	1428					
DN500	737	1372	584	1564					
DN600	864	1473	610	3082					

CONTROL DE BOMBAS

Ajustable en campo la velocidad lenta de apertura y cierre para controlar los transitorios durante el arranque y las paradas normales de las bombas.

ACTUADOR ELÉCTRICO

El actuador eléctrico elimina los complicados sistemas hidráulicos, unidades de potencia, válvulas de solenoide y otros mecanismos de actuación.

RETENCIÓN

Asistida por muelle desarrolla un cierre total independientemente del actuador para evitar el flujo de retorno en un fallo de corriente o de la bomba.

MANIOBRA MANUAL

Permite operaciones de emergencia de las bombas cuando el actuador eléctrico esté inoperativo.

VERSATILIDAD

Tamaños: 3" (DN80) a 24" (DN600) PN10-16-25-40 / ANSI 150-300

Diseño de cuerpo en "Y" o en "curvo de gran radio"

• BAJAS PÉRDIDAS DE CARGA

Aproximadamente un 60% inferiores que las válvulas típicas de globo o angulares

ASIENTO DE CIERRE

Estándar, de acero inoxidable A316 / A304 fácilmente reemplazable.

FABRICACIÓN

La válvula será de la Serie 2920 "CHECKtronic" Válvula de Control de Bombas fabricada por IRUA en Erletxes (VIZCAYA)

NOTA: Especificar la selección de opciones.

Las especificaciones y diseño recogidas en este catálogo pueden cambiar sin previo aviso.

INFORMACIÓN NECESARIA

- 1.Tamaño (DN) y Rating (PN)
- 2.Tipo de válvula
- 3. Material del cuerpo y clase de bridas
- 4. Orientación en la instalación
- 5. Tipo de fluido
- 6. Máxima presión de la bomba a descarga cerrada
- 7. Presión estática mínima con la válvula abierta.
- 8. Presión de descarga de la bomba
- 9. Características del actuador eléctrico
- 10. Velocidad de operación.

IRUA Tech Industries, S.L.
Pol. Ind. Erletxe, C-2, Nave 3
48960 Galdácano (Vizcaya)
Tel.: +34 94 4571596 / Fax: +34 94 4571461

